Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska
نویسندگان
چکیده
The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.
منابع مشابه
Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem
How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are general...
متن کاملMicrobial community composition and function across an arctic tundra landscape.
Arctic landscapes are characterized by a diversity of ecosystems, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Tundra ecosystems differing in plant composition should contain compositionally and functionally distinct microbial communities that differentially transform dissolved organic matter as it moves downslope from dry, upland to wet, low...
متن کاملThe effect of nutrient deposition on bacterial communities in Arctic tundra soil.
The microbial communities of high-latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C and N were previously obser...
متن کاملImpacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities
High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mi...
متن کاملClimate‐related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes
Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organ...
متن کامل